senescence and aging in plants pdf

Senescence And Aging In Plants Pdf

File Name: senescence and aging in plants .zip
Size: 12458Kb
Published: 24.04.2021

Oxidative stress, cellular senescence and ageing[J]. Article views PDF downloads Cited by

Plant Aging

The growth of the vascular plant depends upon the activity of meristems, which are, in a sense, always embryonic. Continued indefinitely, this mode of growth could mean immortality; indeed, the longest lived individual organisms ever to have existed on earth have been certain species of trees. Plants and plant parts, however, do die, and death is often not the consequence of accident or environmental stress but of physiological decline—aging, or senescence.

Various kinds of physiological senescence and death occur and may affect particular cells, tissues, organs, or the whole plant. In the formation of the vessels of the xylem, cells conclude their differentiation by dying and contribute their empty walls to the conducting tissue.

Individual organs such as leaves usually have a limited life span. Entire shoot systems may gradually die back in the aerial parts of perennial plants, which overwinter underground. And, finally, the whole plant may die after a limited period of growth and the completion of reproduction. This behaviour is found in many annual plants , which complete their life cycle in a single growing season.

The life span may extend to two years, as in biennial plants, or longer, as in banana and certain bamboos, which die after flowering and fruiting.

This is clearly so with the death of individual cells during differentiation, when residual products contribute to the effective function of the entire plant body. In annual species, the death of the whole individual may be viewed in a similar way.

The succession of generations in this case is carried on by seeds; the sacrifice of the parent plant may, in fact, contribute to the success of the seedling by making available to the seed a pool of reserves derived from the breakdown of parent tissues. Certain features characterize the onset of senescence. The cells show degenerative changes often associated with the accumulation of breakdown products.

Metabolic changes accompany the degeneration. Respiration may increase for a period, but the rate ultimately declines as the cellular apparatus degenerates. Synthesis of proteins and nucleic acids ceases, and, in some instances, disintegration of cells has been associated with the release of enzymes through the disruption of membrane-bounded bodies called lysosomes. The death of individual cells in tissues such as the xylem appears to be governed by internal factors, but senescence often depends upon interaction of tissues and organs.

The presence of young developing leaves often accelerates the aging of older leaves; removal of the younger leaves retards the senescence of the older ones, suggesting control by competition for nutrients. A similar effect is seen in annual plants, in which the development of fruits and seeds is associated with the senescence and, ultimately, the death of the rest of the plant; the removal of reproductive structures slows the rate of aging.

In these instances competition obviously has some effect, but it does not sufficiently explain why older, mature organs suffer in competition with those still in active development. The link may lie partly in the capacity of developing organs to draw nutrients to themselves, even from older parts of the plant.

The senescence of organs drained in this way could result from the progressive loss of certain key constituents; should leaf protein, for example, turn over by breakdown of proteins to their amino acid constituents and then be resynthesized, a steady drain of amino acids from the leaf would progressively deplete the proteins in the leaf. Senescence in such instances can hardly depend on the withdrawal of nutrients. Furthermore, leaf senescence can be retarded locally by the application of cytokinins , hormones that stimulate plant cell division.

Parallel effects have been demonstrated with growth substances of the auxin type in other plant systems. In the same way that active buds and fruits form sinks for nutrients from elsewhere in the plant, a cytokinin-treated area of a leaf attracts nutrients from other parts of the leaf.

Although the metabolism of isolated leaves may differ in many respects from that of attached leaves, leaf senescence probably does not result only from nutrient drainage but also from the synthetic activity of leaf tissues, which may be under hormonal control from other parts of the plant. The root may be important, for roots are known to export cytokinins to the shoot. Environmental factors, primarily photoperiod daily length of darkness and temperature, play important parts in governing senescence and death in plants.

In annual plants, death is the natural conclusion of development; thus, conditions accelerating development automatically advance senescence.

This is readily seen in short-day plants, in which precocious reproduction upon exposure to long dark periods is followed by early death. Senescence may be retarded in these cases, however, by hormonal treatments of the kind known to delay degeneration and death in detached leaves. Competition for nutrients between vegetative and reproductive structures cannot be the primary cause of death, for, in species such as hemp, the male plants—which do not produce seeds—die earlier than the females under short-day long-night conditions.

In perennial plants, leaf fall is associated with approaching winter dormancy. In many trees leaf senescence is brought about by declining day length and falling temperature toward the end of the growing season. Chlorophyll, the green pigment in plants, is lost; yellow and orange pigments called carotenoids become more conspicuous; and, in some species, anthocyanin pigments accumulate.

These changes are responsible for the autumn colours of leaves. There are some indications that day length may control leaf senescence in deciduous trees through its effect on hormone metabolism, for both gibberellins and auxins have been shown to retard leaf fall and to preserve the greenness of leaves under the short-day conditions of autumn. From the foregoing it may be seen that senescence and death are important in the general economy of plants. The paradox that death contributes to survival is resolved when it is understood that the death of the part contributes to the better adaptation of the whole—whether organ, individual, or species.

Viewed in this way, death is no more than another—albeit the ultimate—manifestation of development. Plant development Article Media Additional Info. Article Contents. Load Previous Page. Senescence in plants The growth of the vascular plant depends upon the activity of meristems, which are, in a sense, always embryonic. In total, the plant has need of at least 16 elements, of which the most important are carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur, potassium, calcium, and magnesium.

The fact that most plant cells undergo extensive size increase unaccompanied by cell division is an important distinction between growth in plants and in animals.

Daughter cells arising from cell division behind the tip of the plant root or shoot may undergo great increases…. Within the nodules, the bacteria convert free nitrogen to ammonia, which the host plant utilizes for its development. To ensure sufficient nodule formation and optimum….

History at your fingertips. Sign up here to see what happened On This Day , every day in your inbox! Email address. By signing up, you agree to our Privacy Notice. Be on the lookout for your Britannica newsletter to get trusted stories delivered right to your inbox.

Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence

Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: i plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; ii leaf senescence-specific transcription factor biology-based technology; and iii translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research.

Service Unavailable in EU region

Provvidenza M. Cellular senescence plays a very important role in organismal aging increasing with age and in age-related diseases ARDs. The identification of interventions able to prevent the accumulation of senescent SCs in the organism or to pretreat cultured multipotent mesenchymal stromal cells MSCs prior to employing them for cell therapy is a main purpose of medical research. Many approaches have been investigated and resulted effective to prevent or counteract SC senescence in humans, as well as other animal models.

Plant senescence is the process of aging in plants. Plants have both stress-induced and age-related developmental aging. Leaf senescence has the important function of recycling nutrients, mostly nitrogen, to growing and storage organs of the plant.

Oxidative stress, cellular senescence and ageing

Senescence and Aging in Plants

Senescence and Aging in Plants reviews the state of knowledge in the processes involved in plant senescence and aging. The book begins by discussing the emergence of senescence as a concept; experimental analysis of senescence; and patterns of senescence. It then examines membrane deterioration during senescence; photosynthesis in relation to leaf senescence; senescence of detached plant organs; changing patterns of nucleic acid and protein synthesis during senescence; and degradative and associated assimilatory aspects of nitrogen removal. This is followed by chapters on aspects of ethylene that may impinge upon its role in promoting senescence of higher plants; the role of cytokinins in plant senescence; the promoters and retardants of senescence; and the role of calcium in plant senescence.

The growth of the vascular plant depends upon the activity of meristems, which are, in a sense, always embryonic. Continued indefinitely, this mode of growth could mean immortality; indeed, the longest lived individual organisms ever to have existed on earth have been certain species of trees. Plants and plant parts, however, do die, and death is often not the consequence of accident or environmental stress but of physiological decline—aging, or senescence. Various kinds of physiological senescence and death occur and may affect particular cells, tissues, organs, or the whole plant.


such as trees and clonal plants, there is a disjunction between the Senescence​, ageing and death are subjects that notoriously attract There are no page or colour charges and a PDF version will be provided for each.


Cell differentiation ppt

Skip to main content. Search form Search. Cell differentiation ppt. Cell differentiation ppt cell differentiation ppt g. Some of these cancers have squamous cells squamous cells are flat, thin cells , as well as glandular cells. Presentation Summary : Cell Differentiation Your body is made up of many different kinds of cells. Define stem cells and explain their importance.

Search this site. Afternoon Tea PDF. Aging in America PDF. Always Broke? American Journal of Mathematics, , Vol. Amphigorey Again PDF.

Skip to main content Skip to table of contents. Advertisement Hide. This service is more advanced with JavaScript available. Plant Aging Basic and Applied Approaches. Front Matter Pages N1-xi. Front Matter Pages

0 comments

Leave a comment

it’s easy to post a comment

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>